
Lab 2: Complex numbers and phasors

1 Complex exponentials

1.1 Grading

This Lab consists of four exercises. Once you have submitted your code in
Matlab Grader AND once the deadline has past, your code will be checked for
correctness. Note here, that upon submission, your code is already subjected to
some basic checks that are aimed to verify whether your code will compile; these
basics checks don’t say anything about the correctness of your submission. You
can visit Matlab Grader again after the deadline (give the servers some time
to do all the assessments; this might even take a few days) to see how well
you did. In case Matlab Grader indicates you failed an exercise, this does
not automatically imply that you failed the entire exercise. Each exercise is
subjected to n tests, where the number of tests can vary between exercises. In
case Matlab Grader indicates you failed the exercise, this means that not all
tests were passed (e.g. in an exercise with 7 tests, you could have passed 6 and
Matlab Grader will indicate you failed the exercise). Your grade is calculated
based on the number of tests you passed and not on the number of exercises
you passed.

1.2 Real signals

Manipulating sinusoidal functions using complex exponentials turns trigonomet-
ric problems into simple arithmetic and algebra. The goal of this laboratory is to
gain familiarity with complex numbers and their use in representing sinusoidal
signals such as x(t) = Acos(2πft+φ) as complex exponentials z(t) = Aejφej2πft.
The key is to use the appropriate complex amplitude together with the real part
operator applied as follows:

x(t) = Acos(2πft+ φ) = Re{Aejφej2πft}

After a summarizing overview of both complex number theory and Mat-
lab structures, we will use some coding exercises to get some more hands on
experience later on.

1

1.3 Sinusoid addition using complex exponentials

As a start, we will firstly review the complex exponential signal and the phasor
addition property needed for adding cosine waves, all with the same frequency,
f = f0[Hz]. In the exercises later on, we will have to do several additions
of sinusoidal functions. The Phasor Addition Rule shows how to add several
sinusoids that have the same frequency f0:

x(t) =

N∑
k=1

Akcos(2πf0t+ φk) (1)

This sum is difficult to simplify using trigonometric identities, but by using
Eulers formula (ejθ = cos(θ) + j sin(θ)), it can be transformed to a sum of
complex numbers. The sum of sinusoids thus reduces to an algebraic sum of
complex numbers.

x(t) =

N∑
k=1

Akcos(2πf0t+ φk) = Re{
N∑
k=1

Ake
jφkej(2πf0t)} (2)

= Re{

(
N∑
k=1

Ake
jφk

)
· ej2πf0t}

= Re{
(
Ase

jφs
)
· ej2πf0t}

= As cos (2πf0t+ φs) ,

with the complex amplitude Ase
jφs defined as:

Ase
jφs =

N∑
k=1

Ake
jφk . (3)

From this we can conclude that, when adding different sinusoidal signals
with the same frequency f0, we will obtain a sinusoidal signal that has the same
frequency f0.

1.4 Complex numbers in Matlab

Matlab can be used to compute complex-valued formulas and also to display
the results as vector or ”phasor” diagrams. Matlab has several functions al-
ready included to work with complex numbers and phasors. Here are some of
Matlab’s built-in complex number operators:

2

conj Complex conjugate
abs Magnitude

angle Angle (or phase) in radians
real Real part
imag Imaginary part
i,j pre-defined as

√
−1

x = 3 + 4i i suffix defines imaginary constant (same for j suffix)
exp(j*theta) Function for the complex exponential ejθ

Each of these functions takes a vector (or matrix) as its input argument and
operates on each element of the vector.

When unsure about a command, type help command or doc command.

Exercise 1 [6 tests]

Complex numbers can be represented in the complex plane, a plane with a real
axis and an imaginary axis. When performing arithmetics on complex numbers,
it can be insightful to visualise the effect of these arithmetics in the complex
plane. In this exercise you should get familiar with complex numbers and learn
how simple arithmetics, such as addition and multiplication, make the complex
numbers behave in the complex plane. For this exercise it is therefore strongly
advised to study the figures that the template script outputs and see how the
complex numbers behave.

In the template solution for this exercise, fill in z1, z2, z4 and z5 as given in
equations (4) and (5). z3 is the addition of z1 and z2 and z6 is the multiplication
of z4 and z5. Also calculate the absolute value and angle of z4, z5 and z6 and
see how they are related to each other.

z1 = 2 + 3j
z2 = −1 + 2j
z3 = z1 + z2

(4)
z4 = 3

2 · e
j·π6

z5 = 2 · ej·π3
z6 = z4 · z5

(5)

2 Matlab introduction

2.1 Vectorization

The power of Matlab comes from its matrix-vector syntax. In most cases,
loops can be replaced with vector operations because functions such as exp()

and cos() are defined for vector inputs, e.g.,

cos(vv) = [cos(vv(1)), cos(vv(2)), cos(vv(3)), ..., cos(vv(N))]

where vv is an N -element row vector. Vectorization can be used to both
simplify and speed up your code. If you have the following code that plots a
certain signal,

3

M = 200;

for k = 1:M

x(k) = k;

y(k) = cos(0.001 * pi * x(k)*x(k));

end

plot(x, y)

then you can replace the for loop with a single vector operation and get the
same result with 3 lines of code:

M = 200;

y = cos(0.001 * pi * (1:M).*(1:M));

plot(1:M, y)

2.2 Functions

Functions are a special type of M-file that can accept inputs (matrices and
vectors) and also return outputs. The keyword function must appear as the
first word in the ASCII file that defines the function, and the first line of the
M-file defines how the function will pass input and output arguments. The file
name must be the same as the function name and the file extension must be a
lower case “m” as in generateCosine.m for the code example shown below.1

function [xx,tt] = generateCosine(frequency, duration)

tt = 0:1/(100*frequency):duration;

xx = cos(2*pi*frequency*tt);

end

Notice the word “function” in the first line. The function has “frequency”
and “duration” as inputs and “xx” and “tt” as outputs. Both of the outputs
should appear in the left-hand side of at least one assignment line within the
function body.

2.2.1 Default Inputs

In Matlab you can make the last input argument(s) of a function take on
default values in case these arguments are omitted in the function call. You can
use the nargin operator to determine the number of passed arguments. The
example below shows how duration can be made optional using nargin:

function [x,t] = generateCosine(frequency, duration)

if nargin < 2

duration = 3;

end

...

end

1See Section B.5 in Appendix B of the ‘Signal Processing First’ book for more discussion.

4

Exercise 2 [2 tests]

Create a function that plots the cosine wave x(t) = A cos(ωt + φ), given the
input values: Amplitude , AngularFrequency [rad/s], Phase [rad] and Duration
[s]. Note that angular frequency ω = 2πf . The function also has to output the
values of t and x(t), where t is the time and x(t) is the value of the cosine at a
given point t.

Furthermore, the function has to generate exactly 32 values of the sinusoid
per period. This should result into a total of 32M + 1 values, where M is the
number of periods. (Hint: The total amount of values of a variable can be
checked by having a look at the variables in the workspace. Here the size of the
array of a variable can be seen. Alternatively, you can use the command ”who
x” which will show you the size of x.)

In this case, the function is not only used to generate the cosine wave, but
also plots it. To this end, make sure that you include the plotting within the
function body.

The function should be extensively tested in MATLAB to make sure you
have the correct time units t.

2.3 Complex numbers: imaginary part

2.3.1 Euler’s Formula

The conversion between phasors (time-dependent complex exponentials) and si-
nusoids can easily be performed by the following identity:

ejθ = cos (θ) + j sin (θ) . (6)

This identity is called Euler’s formula. It can be explained using the Taylor
polynomials discussed in the Calculus course of quartile 1. Below the phasor is
written as a Taylor polynomial:

ejθ = 1 + jθ +
(jθ)2

2!
+

(jθ)3

3!
+

(jθ)4

4!
+

(jθ)5

5!
+

(jθ)6

6!
+

(jθ)7

7!
+

(jθ)8

8!
+ · · ·

= 1 + jθ − θ2

2!
− jθ3

3!
+
θ4

4!
+
jθ5

5!
− θ6

6!
− jθ7

7!
+
θ8

8!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!
− · · ·

)
+ j

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
The final two terms inside the brackets can be simplified by making use of the
Taylor polynomials of the sine and cosine functions:

5

sin θ =

∞∑
n=0

(−1)n

(2n+ 1)!
θ2n+1 = θ − θ3

3!
+
θ5

5!
− · · · for all θ

cos θ =

∞∑
n=0

(−1)n

(2n)!
θ2n = 1− θ2

2!
+
θ4

4!
− · · · for all θ

This results in Euler’s formula.
Now by using Euler’s expression we can write a cosine function as the real

part of a phasor as follows:

Re
{
ej(ωt+φ)

}
= cos (ωt+ φ)

Another explanation from Euler’s formula can be obtained from the polar
representation of complex exponentials, as has been discussed during the lec-
tures.

2.3.2 Imaginary part in MATLAB

Recall from exercise 5 of Lab 1 that plotting the function w(x) =
3
√
10−x−1√
4−x2

gave

the following warning in MATLAB:

Warning: Imaginary parts of complex X and/or Y arguments ignored

In the obtained plot, it can be seen that for |x| < 2 the function is in the real
domain. At |x| = 2, w(x) goes to infinity, because the denominator is equal
to 0. For |x| > 2 the function switches from the real to the complex domain.
Before the introduction of complex numbers, the assumption was made that
the function did not exist, because a negative number underneath a square root
was not possible. However, from complex numbers you have learned that the
negative number of a square root is possible by describing the function in the
complex domain. In the graph you can see that for |x| > 2 the real part of w(x)
is 0, while the imaginary part is nonzero.

Hence, for |x| > 2 the following holds:

w(x) =
3
√

10− x− 1√
4− x2

=
3
√

10− x− 1
√
−1 ·
√
x2 − 4

=
3
√

10− x− 1

j
√
x2 − 4

= 0−j
3
√

10− x− 1√
x2 − 4

for |x| > 2

By making use of the imag() function of MATLAB the answer to this function
can be plotted in the same graph in orange as is shown in the following figure:

Exercise 3 [7 tests]

Consider the phasor y(t) = Aej(2πft+φ) with amplitude A = 1, frequency f =
1[Hz], and phase φ = 0. Plot this phasor over the time domain from [0,2]
seconds, with 201 measuring points over this range. Plot the phasor in blue

6

0 2 4 6 8 10

x

-6

-4

-2

0

2

4

6

w
(x

)

real part of w

imaginary part of w

on the time domain and notice the warning message appear in the command
window. The plot function ignores the imaginary part if the answer contains
both a real and imaginary part. By making use of the imag() function, you
can separate the imaginary part of the answer from the real part. Now add in
the same plot the imaginary part of the answer in the color red. Make sure
to first plot the real part and after that the imaginary part! If done
properly, a real cosine signal and an imaginary sine signal should appear, as also
described by Euler’s formula.

Exercise 4 [17 tests]

Audible (sound) waves have frequencies ranging from 20 Hz to 20.000 Hz. This
means that sound waves complete a period between 0.05 and 0.00005 seconds.
When these waves travel through the air at approximately 344m/s, they travel
approximately 2 cm up to 17 meters during one period.

In real-life, the sound waves will not always reach their target without re-
flecting of another object (e.g. the sound of a thunderstorm can reflect of tall
buildings). Due to the reflection of the waves of different objects, some waves
will travel more distance than others before reaching their target. So even when
they are transmitted ”in-phase” (i.e. they have the same phase), when they
reach the receiver the sound waves can have a phase difference due to different
lengths over which they have propagated. This phase difference can affect the
signal that is being received by the receiver.

This exercise will try to give you insight in the problems that can occur with
the reflection of periodic signals.

Let’s assume an example with a periodic signal transmitted by a source in
all possible directions. In one direction, the signal will travel to the receiver via
a straight line. In another direction, the sound wave will reflect from a surface
and then travel to the receiver. Based on the difference in propagation distance
the phase difference between the two received signals can vary.

7

For this exercise you need to make a subplot, containing four different plots
underneath each other. Each plot should have the time t on the horizontal axis,
ranging from [0, 3] seconds with 301 measuring points. The directly received
signal is represented by the real part of a phasor with a frequency f = 1[Hz],
a phase of φ = 0 and an amplitude of A = 1 and needs to be plotted in every
single one of the subplots. This signal should have the color blue. Next, a second
signal needs to be plotted with a phase difference. This should represent the
reflected signal. The amplitude and frequency are equal to those of the directly
received signal, however, the phase is respectively 0, π/2, π, 3π/2 for each of
the subplots. This signal should be colored cyan. NOTE: when the phase is
positive, this means the signal will ’move to the left’

Up to this point you should have four subplots underneath each other, with
each one containing the directly received signal and the reflected signal with
different phases in each of the plots.

Imagine the receiver, which receives both the reference and reflected signal
at once. The received signal is then equal to the addition of the directly received
and reflected signals. Plot this signal too in red for each of the four subplots.

Now add a grid to all the subplots and have a look at the amplitude of the
received signal. What do you notice?

The script you wrote should give a figure similar to the figure below (note
that the label along the vertical axis is not required in your solution). For
each subplot, the plotted graphs must be made in the following order:
Directly received, Reflected and Addition!

0 0.5 1 1.5 2 2.5 3
-2

0

2

0 0.5 1 1.5 2 2.5 3
-2

0

2

0 0.5 1 1.5 2 2.5 3
-1

0

1

0 0.5 1 1.5 2 2.5 3

t

-2

0

2

a
m

p
lit

u
d
e

8

